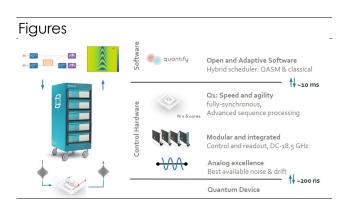
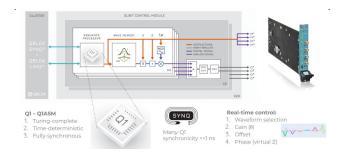
Fully-integrated control stacks for quantum computing in the NISQ era

Cornelis Christiaan Bultink

M. Tiggelman, J. Gloudemans, D. de Jong, Y. B. Kalyoncu, J. van Oven


Qblox BV, Elektronicaweg 10, Delft, The Netherlands. contact: <u>hello@gblox.com</u>

Abstract


Reaching NISQ applications hinges on improvements in the gate fidelity and gubit number. Qblox supports this with timeefficient, ultralow-noise, and cost-effective control stacks. We introduce the Cluster system which incorporates up to 120 Q1 processors capable of sequencing pulses, parameters, and measurement their operations in real time [1]. This architecture speeds up experiments by orders of magnitude as it avoids the overhead caused by software-controlled loops. This speed-up is realized by multi-parameter real-time pulse modification and by onprocessing (integrating, board data averaging, binning) of readout signals and storing up to 131072 measurement results per experimental run. The state-of-the-art signal noise level (14 nV/ \sqrt{Hz} @ 1 MHz and 5 Vpp) supports improved gate fidelities and the low gain and offset drift (a few ppm/K) reduces the need for recalibrations. The Cluster supports many qubit platforms [2] with its wide frequency range from DC to 18.5 GHz while occupying less volume than 1 liter per controlled qubit. Quantify -an opensource python framework- manages the hardware stack. which allows hvbrid scheduling of gate-level and pulse-level descriptions [3]. This full-stack approach opens a fast track for gate optimizations and scaling efforts towards running NISQ applications.

References

- [1] W. Vlothuizen et al. (TU Delft, APS MM P48.014, 2016)
- [2] Y. B. Kalyoncu et al. (Qblox, APS MM B35.00010, 2022)
- [3] <u>The Quantify-Scheduler</u>

Figure 1: Qblox fully-integrated control stacks provide 4 synergistic hardware and software layers for the fastest, smallest and lowest-noise control. By directly inputting and outputting pulses in the range of DC to 18.5 GHz experimental setups are simple and scalable.

Figure 2: The control flow in the control stack is at the heart executed by the distributed Q1 processor cores (up to 120 per Cluster). These Turing-complete and time-deterministic cores operate in full synchronicity and allow for fast and independent experiment execution with real-time parameterization of pulse properties.

Figure 3: Examples where order-of-magnitude speed-ups are achieved through real-time onboard compiling and on-board data analysis. A) Chevron plot for tuning the pulse amplitudes and duration of a transmon qubit, measured in 23 seconds (IMPAQT consortium) B) Charge stability diagram for tuning a Si double-dot sample, measured in 180 ms (Qutech).